112 research outputs found

    Logic and Memory Design Based on Unequal Error Protection for Voltage-scalable, Robust and Adaptive DSP Systems

    Get PDF
    In this paper, we propose a system level design approach considering voltage over-scaling (VOS) that achieves error resiliency using unequal error protection of different computation elements, while incurring minor quality degradation. Depending on user specifications and severity of process variations/channel noise, the degree of VOS in each block of the system is adaptively tuned to ensure minimum system power while providing "just-the-right” amount of quality and robustness. This is achieved, by taking into consideration block level interactions and ensuring that under any change of operating conditions, only the "less- crucial” computations, that contribute less to block/system output quality, are affected. The proposed approach applies unequal error protection to various blocks of a system-logic and memory-and spans multiple layers of design hierarchy-algorithm, architecture and circuit. The design methodology when applied to a multimedia sub-system shows large power benefits (up to 69% improvement in power consumption) at reasonable image quality while tolerating errors introduced due to VOS, process variations, and channel nois

    Exploring Functional Acceleration of OpenCL on FPGAs and GPUs Through Platform-Independent Optimizations

    Get PDF
    OpenCL has been proposed as a means of accelerating functional computation using FPGA and GPU accelerators. Although it provides ease of programmability and code portability, questions remain about the performance portability and underlying vendor's compiler capabilities to generate efficient implementations without user-dened, platform specic optimizations. In this work, we systematically evaluate this by formalizing a design space exploration strategy using platform-independent micro-architectural and application-specic optimizations only. The optimizations are then applied across Altera FPGA, NVIDIA GPU and ARM Mali GPU platforms for three computing examples, namely matrix-matrix multiplication, binomial-tree option pricing and 3-dimensional nite difference time domain. Our strategy enables a fair comparison across platforms in terms of throughput and energy efficiency by using the same design effort. Our results indicate that FPGA provides better performance portability in terms of achieved percentage of device's peak performance (68%) compared to NVIDIA GPU (20%) and also achieves better energy efficiency (up to 1:4X) for some of the considered cases without requiring in-depth hardware design expertise

    Containing the Nanometer “Pandora-Box”: Cross-Layer Design Techniques for Variation Aware Low Power Systems

    Get PDF
    The demand for richer multimedia services, multifunctional portable devices and high data rates can only been visioned due to the improvement in semiconductor technology. Unfortunately, sub-90 nm process nodes uncover the nanometer Pandora-box exposing the barriers of technology scaling—parameter variations, that threaten the correct operation of circuits, and increased energy consumption, that limits the operational lifetime of today’s systems. The contradictory design requirements for low-power and system robustness, is one of the most challenging design problems of today. The design efforts are further complicated due to the heterogeneous types of designs (logic, memory, mixed-signal) that are included in today’s complex systems and are characterized by different design requirements. This paper presents an overview of techniques at various levels of design abstraction that lead to low power and variation aware logic, memory and mixed-signal circuits and can potentially assist in meeting the strict power budgets and yield/quality requirements of future systems

    Facilitating Easier Access to FPGAs in the Heterogeneous Cloud Ecosystems

    Get PDF
    With FPGAs being increasingly integrated into existing software-based heterogeneous cloud environments, novel evaluation mechanisms are required to reveal the energyperformance trade-offs of accelerators (FPGAs, GPUs, etc) using high-level heterogeneous programming environments. For FPGAs, this also requires reconsideration of scheduling policies and reconfiguration methods with an aim to integrate software-based approaches as well as optimizations for broader workload sizes. Proposed considerations are evaluated using various configuration techniques for a number of applications

    Cross-Layer Inexact Design for Low-Power Applications

    Get PDF
    Approximate and error tolerant circuits are a radical new approach to trade calculation accuracy for better speed, power, area and yield. The IcySoC project platform revisits low-power and low-voltage VLSI design through a cross-layer combined inexact design framework

    Design of Energy Efficient and Dependable Health Monitoring Systems under Unreliable Nanometer Technologies

    Get PDF
    In this paper we investigate the impact of potential hardware misbehavior induced by reliability issues and scaled voltages in wireless body sensor network (WBSN) nodes. Our study reveals the inherent resilience of popular algorithms in cardiac monitoring applications and argues that by exploiting the unique characteristics of such algorithms the energy efficiency and reliability of such systems can be significantly improved. This is achieved by developing a cross-layer design paradigm that utilizes low cost techniques at the hardware and software layers and by optimizing the synergy between them in order to provide intelligent trade-offs between energy, performance and quality. The main idea of the proposed approach is the selective application of costly robust techniques only to the most critical tasks identified at the application layer that are detrimental for obtaining sufficient output quality. Our results show that by ensuring the correct operation of only 37% of the total computations in an electrocardiogram (ECG) monitoring WBSN node we can achieve up to 70% power savings with only 9% degradation in ECG output quality
    • …
    corecore